Bifurcation Analysis in a Predator-prey Model with Discrete and Distributed Time Delay
نویسندگان
چکیده
In this paper, a class of predator-prey model with discrete and distributed time delay is considered, where the time delay is regarded as a parameter. It is shown that Hopf bifurcation occurs when this delay passes through a sequence of critical value. By using the normal form theory and center manifold theory, we derive some explicit formulae for determining the stability and the direction of the Hopf bifurcation periodic solutions bifurcating from Hopf bifurcations. Some numerical simulations for justifying the theoretical analysis are also provided. Finally, main conclusions are given.
منابع مشابه
Threshold harvesting policy and delayed ratio-dependent functional response predator-prey model
This paper deals with a delayed ratio-dependent functional response predator-prey model with a threshold harvesting policy. We study the equilibria of the system before and after the threshold. We show that the threshold harvesting can improve the undesirable behavior such as nonexistence of interior equilibria. The global analysis of the model as well as boundedness and permanence properties a...
متن کاملThe Dynamical Analysis of a Delayed Prey-Predator Model with a Refuge-Stage Structure Prey Population
A mathematical model describing the dynamics of a delayed stage structure prey - predator system with prey refuge is considered. The existence, uniqueness and bounded- ness of the solution are discussed. All the feasibl e equilibrium points are determined. The stability analysis of them are investigated. By employ ing the time delay as the bifurcation parame...
متن کاملHopf bifurcation analysis of a diffusive predator-prey model with Monod-Haldane response
In this paper, we have studied the diffusive predator-prey model with Monod-Haldane functional response. The stability of the positive equilibrium and the existence of Hopf bifurcation are investigated by analyzing the distribution of eigenvalues without diffusion. We also study the spatially homogeneous and non-homogeneous periodic solutions through all parameters of the system which are spati...
متن کاملDiscretization of a fractional order ratio-dependent functional response predator-prey model, bifurcation and chaos
This paper deals with a ratio-dependent functional response predator-prey model with a fractional order derivative. The ratio-dependent models are very interesting, since they expose neither the paradox of enrichment nor the biological control paradox. We study the local stability of equilibria of the original system and its discretized counterpart. We show that the discretized system, which is...
متن کاملthe predator-prey discrete system codimention- 2 bifurcations
A discrete predator-prey system is presented. We study the existence and stability of the fixed point system. The conditions of existence of Flip and Neimark-sacker bifurcation is the system are derived. By using numerical continuation methods and MatContM toolbox. We compute bifurcation curves of fixed points and cycles with periods up to 32 under variation of one and to parameters, and comput...
متن کامل